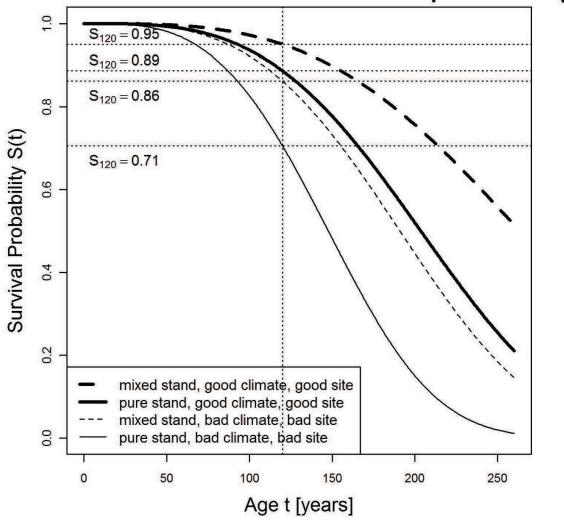
# An Integrated Forest Management Approach for More Effective Natural Resource Governance



"How to link forest yield with biodiversity support in an era of global climate change"




# Uncertainty: Tree mortality

Forestry is a field that currently works with the highest level of uncertainty!

How much time do we have to change the forests?

40-70 years?

# Effect of mixture on survival probability



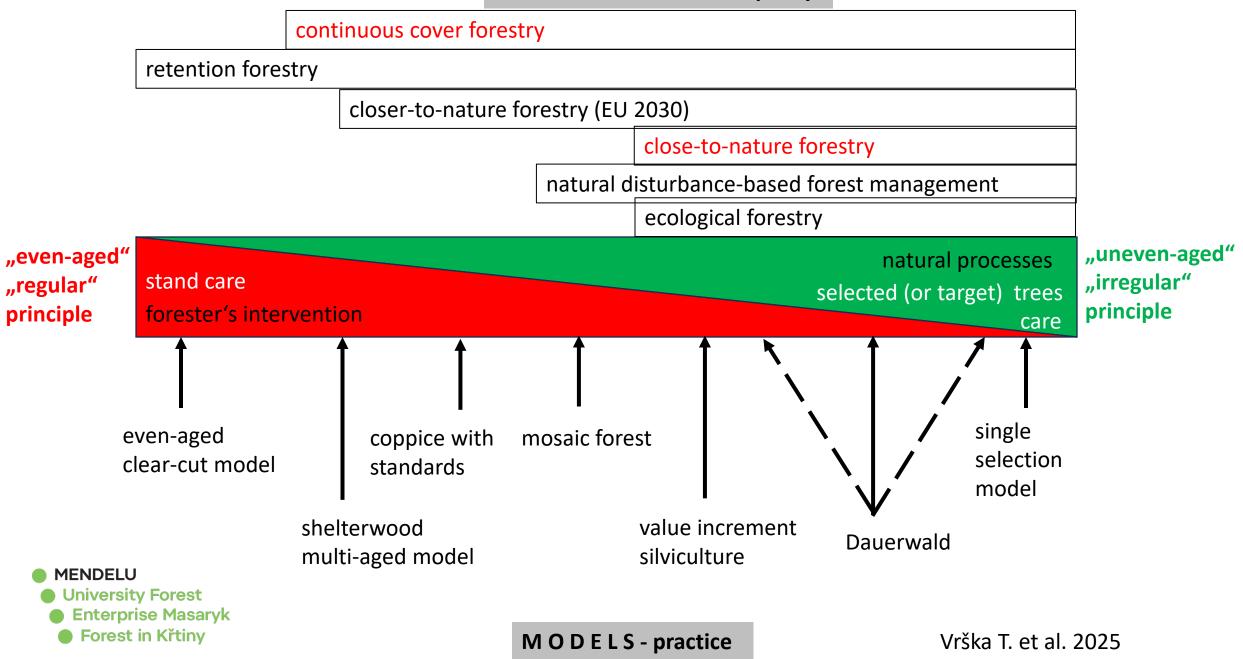
Neuner et al. 2014. Global Change Biology 21: 935-946

# European perspective

**Green Deal** – circular (bio)economy – timber as the renewable resource – high quality stems for long-term useful products; cascade use chain;

**EU Forest Strategy for 2030** – mitigation of climate change, **resilience** of forests, closer-to-nature forestry

**EU Biodiversity Strategy for 2030** – stop the loss of biodiversity


Nature Restoration Law – protect 30 % of land/sea (20+10)

+ new potential **EC certification system** for closer-to-nature-forestry

= to change the state of European forests

Never ending questions: How? When? How fast? Who?

### CONCEPTS – science + policy





# Four big questions:

- 1 How to adapt current stands?
- 2 How to manage new forest stands in succession after the calamities?
- 3 How to connect everything into a functional system on the landscape scale?
- 4 Who can change the state of European forests?



#### **OPEN ACCESS**

EDITED BY
Yashwant Singh Rawat,
Federal Technical and Vocational Education
and Training Institute (FTVETI), Ethiopia

REVIEWED BY
Xu Han,
Beihua University, China
Shengen Liu,
Fujian Agriculture and Forestry University,
China

# Stand structure is more important for forest productivity stability than tree, understory plant and soil biota species diversity

Tao Wang, Lingbo Dong and Zhaogang Liu\*

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin, China

- the structure of the stand is more important than the species composition for the stability of production in the future
- we can not say the tree species composition doesn't matter, but structure is a priority
- we can change the spatial structure faster than the species composition !!!









# Three big questions:

- 1 How to adapt current stands?
- 2 How to manage new forest stands in succession after the calamities?
- 3 How to connect everything into a functional system on the landscape scale?
- 4 Who can change the state of European forests?

### RESEARCH ARTICLE

### Competition-induced tree mortality across Europe is driven by shade tolerance, proportion of conspecifics and drought

```
Niko Kulha¹ | Juha Honkaniemi¹ | Julien Barrere² | Susanne Brandl³ |

Thomas Cordonnier²,⁴ | Kari T. Korhonen¹ | Georges Kunstler² | Carola Paul⁵,6 |

Björn Reineking² | Mikko Peltoniemi¹

Journal of Ecology
```

# In general:

- to plant mixed stands at the level of individual interspecies mixing (trees does not have the same neighbor)
- to plant species with a greater amplitude of light/shade tolerance
- to work with lower number of trees that will have large crowns (they will not be suppressed)











Irregularity – in number of trees per ha, intensity of thinning, patches creation...

MENDELUUniversity ForestEnterprise MasarykForest in Křtiny



# Three big questions:

- 1 How to adapt current stands?
- 2 How to manage new forest stands in succession after the calamities?
- 3 How to connect/integrate everything into a functional system on the landscape scale?
- 4 Who can change the state of European forests?



Contents lists available at ScienceDirect

# Biological Conservation

journal homepage: www.elsevier.com/locate/biocon



### Perspective





Rémi Duflot a,b,\*, Lenore Fahrig , Mikko Mönkkönen a,b

- biodiversity protection and promotion is often adored without economic context
- it can be linked = habitat matrix + spatial diversification of silvicultural models
- uneven-aged silvicultural models can increase increment partial compensation of the increment loss for the biodiversity matrix

<sup>&</sup>lt;sup>a</sup> Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland

<sup>&</sup>lt;sup>b</sup> School of Resource Wisdom, University of Jyvaskyla, Jyvaskyla, Finland

<sup>&</sup>lt;sup>c</sup> Geomatics and Landscape Ecology Research Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada

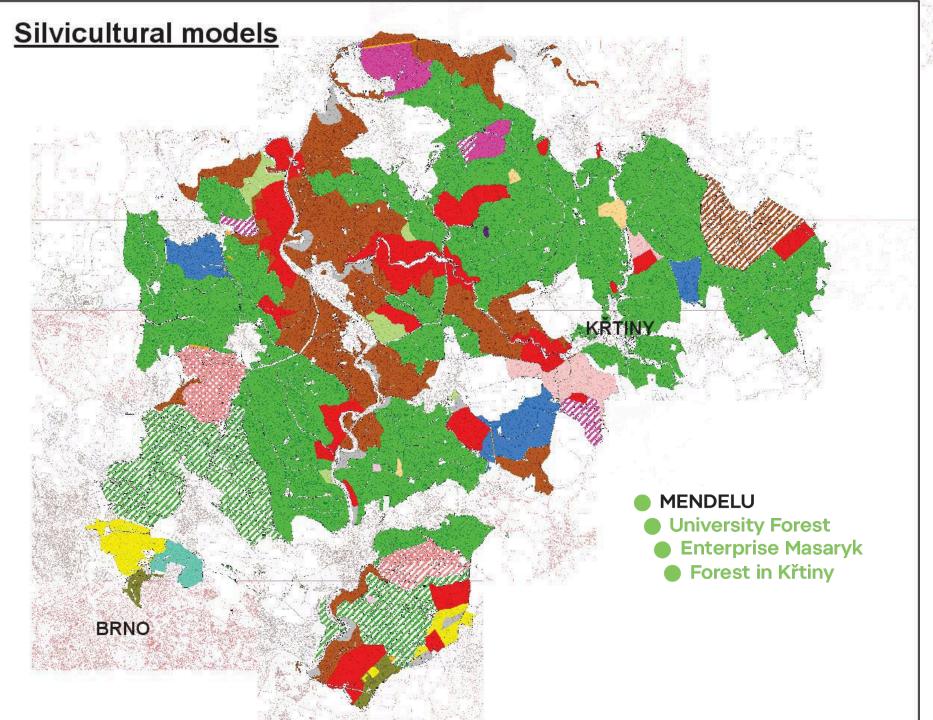
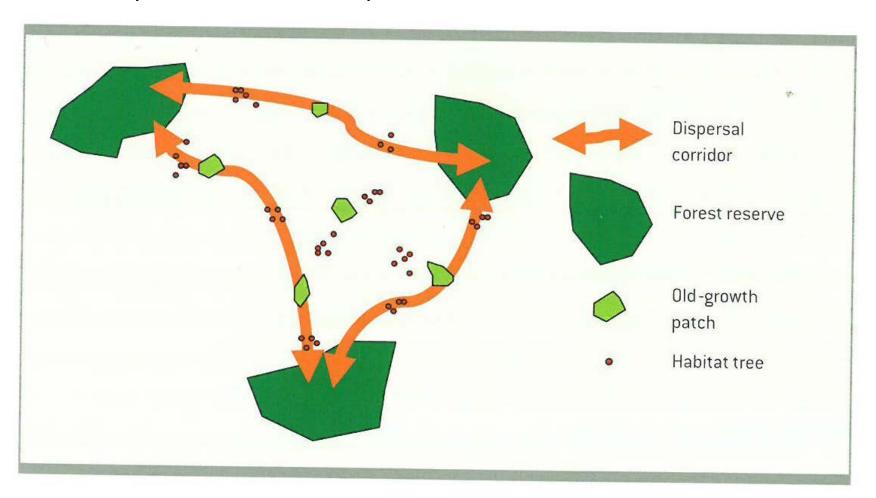



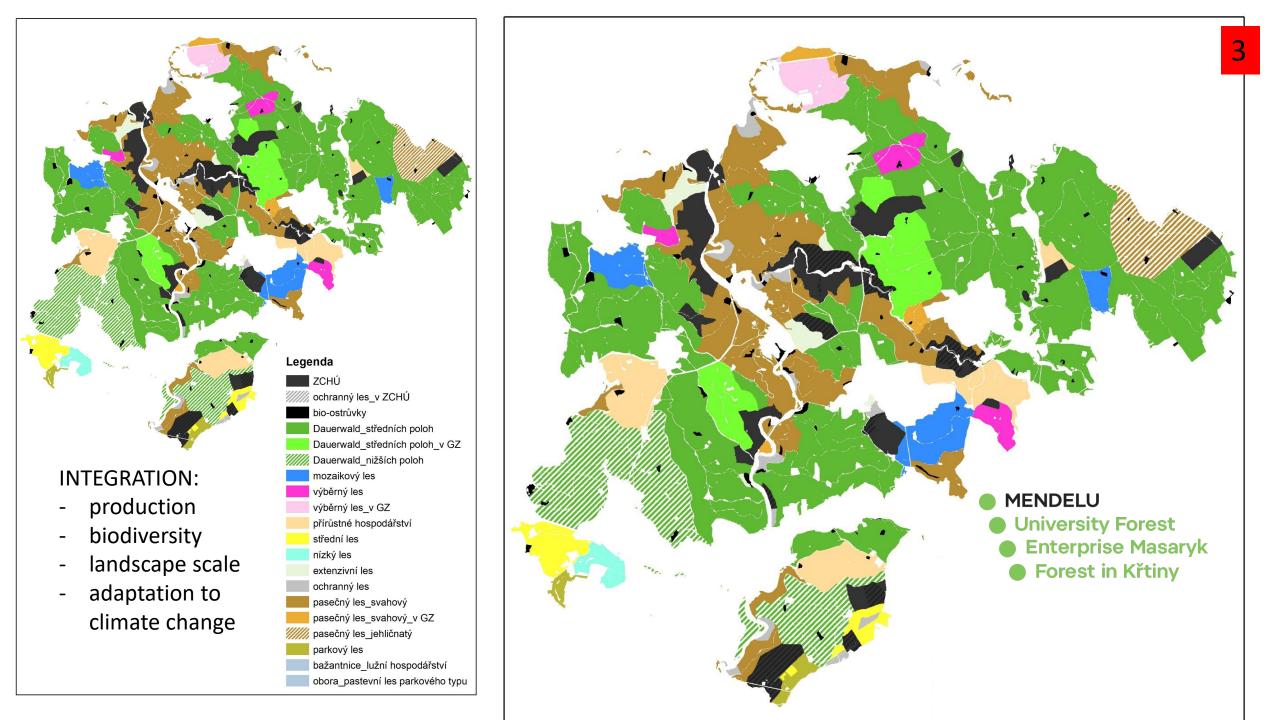

Fig. 1. Landscape-scale (gamma) biodiversity as a function of management diversity at (a) low, (b) intermediate, and (c) high evenness (in proportion of area) among management regimes. Hypothetical landscapes show examples with three, five or nine management regimes. At a constant level of management diversity, an increase in evenness among management regimes increases species diversity. As different forest management regimes are suitable for different species, increased diversity of management regimes at a landscape scale should increase overall biodiversity. However, beyond a certain threshold the area-heterogeneity trade-off could lower the benefits of management diversity (dashed line), especially when management is highly uneven (a) – see Discussion Section 3.1.






### Legend

- Uneven-aged "Dauerwald"\_beech-spruce-larch (45%)
- Uneven-aged "Dauerwald"\_oak-pine (9%)
- Mosaic forest\_beech and oak (3%)
- Selection forest\_fir and spruce (2%)
- Selection forest\_beech (1%)
  - Value increment silviculture\_beech (2%)
- Value increment silviculture\_oak (1%)
- Value increment silviculture\_oak and beech (2%)
- Coppice with standards\_oak-hornbeam-lime (2%)
- Coppice\_oak-hornbeam-lime (1%)
- Extensive forest\_beech-oak-hornbeam (1%)
- Forest with high rotation\_beech-larch (0,1%)
- Soil-protected forest\_beech-oak-hornbeam (1%)
- Even-aged shelterwood on slope\_beech (15%)
- Even-aged shelterwood\_conifers (2%)
- Unmanaged forest reserves\_broadleaves (8%)
- Christmas trees (0,1%)
  - Seed orchard\_larch, pine (0,1%)


  - Arboretum (0,4%)
- Recreation forest (0,6%)
- Agroforest (0,1%)
- Game enclosure for pheasants\_floodplain forestry (1%)
- Game enclosure for deers (0,5%)

# Production + biodiversity = integration Triple "R" concept: reserve – retain - restore



**Figure 30**. Schematic representation of a functional network of old-growth elements: larger set-asides (reserves >10 ha) are interconnected through set-aside patches (1–5 ha) and individual habitat trees. Areas with higher densities of habitat trees can form "corridors", but a qualitative "matrix" can also be crossed by most target species. Source: Lachat and Bütler 2007.

Krumm et Kraus eds. 2014





# Three big questions:

- 1 How to adapt current stands?
- 2 How to manage new forest stands in succession after the calamities?
- 3 How to connect everything into a functional system on the landscape scale?
- 4 Who can change the state of European forests?

WHO can change the state of European Forests - EP, EC, EEA, EFI, Universities, Authorities?

foresters have to: WANT – CAN – BE ABLE (to know how)

forest workers need: qualified foresters, long-term job, regular salary, to return to the same forest stands

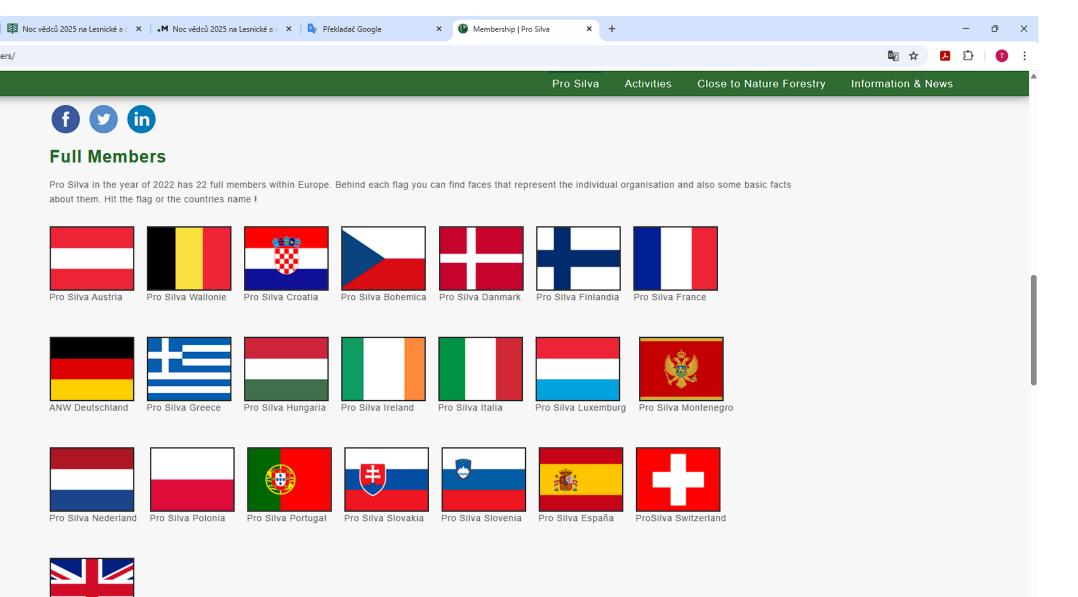
It costs a lot of money! Close-to-nature forestry brings the savings!

Close-to-nature forestry =

- to use the more natural power (lower human input) to produce high quality timber continually
- to work with more complex ecosystem saving biodiversity (more irregularity)
- to work with qualified responsible workers (no other way)

triple WIN strategy – HQ timber / biodiversity support / local people




**WANT** = change the mind

**CAN** = owner's decision

**BE ABLE TO DO IT** = to know how to do it

- theoretically lessons
- practical presentations in the field
- practical education on the training plots
- first change in the stands managed by me
- broader practical applications
- first results need min. 20 years





Cont.Cover Forestry Grp.(CCFG)



- PRO SILVA is a European federation of foresters who advocate forest management based on natural processes.
- PROSILVA promotes forest management strategies which optimise the maintenance, conservation and utilisation of forest ecosystems in such a way that the ecological and socio-economic functions are sustainable and profitable.

# We integrate:

- conservation of ecosystems, biodiversity
- protection of soil and climate
- production of timber and other products
- recreation, amenity, and cultural aspects



- More than 5500 members, practitioners dominate
- "Pro Silva is the club of dot-makers"
- Volunteers only
- 22 national branches
- no groups from Baltic states yet!!!

### **EDUCATION + KNOWLEDGES SHARING**

- Exemplary Forests = 100 ha+
- Reference stands '= 5 ha+
- Training plots operational data, Martelloscopes
- Combinations on one property



# **ANW-Beispielbetriebe**

### **EXEMPLARY FORESTS - GERMANY**



Karte

Übersicht

Details





Integrated forest management = HQ timber (economy) + biodiversity (resilience) + people (social role)

CTNF practitioners need political and financial support to share the knowledges with other colleagues.

- we know why they are so careful to change the silvicultural models
- we know how to explain the necessity of big change in mind, in daily practice
- we are able to earn their trust

ONLY the motivated "dot makers" can change the state of forests



### TAKE HOME MESSAGE FOR PRACTITIONERS

# QRO SILVA

### Climate change:

- to work with lower number of trees per ha
- spatial structure of stands is more important than the species composition (it is important too at second)
- theoretical ideal forest: no tree has the same neighbor

### Silvicultural models:

- to work with matrix of more models according to local site conditions (clever yield)
- exactly defined models, procedures be able to distinguish differences
- uneven-aged (close-to-nature) models should prevail

## Landscape complexity – integrated forestry:

- biodiversity 3 levels of scale: forest reserves stepping stones habitat trees
- to combine the productive models in the space
- FMP according to control method (no age-class method) to combine with control of wild game damages

Journal of Forestry https://doi.org/10.1007/s44392-025-00015-2

### **REVIEW PAPER**



### Silviculture—More Complex Than Ever

Klaus J. Puettmann $^1$  · Anthony W. D'Amato $^2$  · Michael Dockry $^3$  · Marie-Josee Fortin $^4$  · Austin Himes $^5$  · Brian Palik $^6$  · Kristen Waring $^7$  · Marcella Windmuller $^3$ 

Received: 25 March 2024 / Accepted: 15 August 2024 © The Author(s), under exclusive licence to Society of American Foresters 2025

### **Abstract**

Silviculture is the central discipline of forestry. It has always been influenced by changes in social and environmental conditions. Much has been accomplished in terms of advancing silviculture, including the culture, scope, and the goals and values it supports. However, we see that trends that initiated or strengthened during the last three decades are not well reflected in the current definition and this provides a barrier for further progress. Such trends include global change, an increased diversity of landowners and associated management goals, expectations of people with a wide range of values, and an acceptance of different ways of knowing. In this context, we see the benefit of providing a more holistic view. Thus, we propose to define silviculture as the "art and science of supporting and stewarding forest and woodland ecosystems and their ability to adapt in order to foster the diverse values of forest's contributions to people, including landowners, rights holders, communities and society". We discuss this proposed definition, specifically how it can lead to increased flexibility in silvicultural decisions, which can reflect a higher diversity of values and strengthen the adaptive capacity of forests. Furthermore, we discuss how addressing these trends requires a change in education.



MENDELU

University Forest

Enterprise Masaryk

Forest in Křtiny

